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Abstract—In this paper, we develop a Future-Demand-Aware
Vehicle Dispatching Service (FDA-VeD) by considering the
relocation of idle vehicles based on the predicted future
demands in order to achieve high passenger serving ratio.
We evaluate the performance of our system on New York
taxi dataset. We demonstrate that our approach achieves a
significantly higher serving ratio with a low operating cost
increase in comparison with existing methods.
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I. INTRODUCTION

With the development of ubiquitous GPS-enabled devices
and the emergence of vehicle dispatching platforms (e.g.,
Uber, DiDi), it is easy for passengers to send trip requests
to a centralized dispatching platform. However, dispatching
vehicles for real-time requests is challenging due to the
following reasons: (a) Passengers’ trip requests are massive
and unevenly distributed. (b) The dynamic traffic condi-
tions further add the difficulties [1]. As the trip requests
are usually stochastic, during a specific period of time, it
is common that for some areas the number of vehicles
cannot satisfy the total trip requests (called “undersupply
area”), while for some other areas the available vehicles are
more than what are requested (called “oversupply area”).
The available vehicles in oversupply areas are idle ones.
Proactively relocating idle vehicles to undersupply areas can
significantly contribute to the dispatching performance. As
shown in Figure 1, if the idle vehicle stays at point P
without relocation, it would take 10 minutes to arrive at the
pickup location P,. But if the idle vehicle was proactively
relocated to the undersupply area Z, it would take only
two minutes. Thus, proactive relocation of idle vehicles to
undersupply areas have a significant impact on improving
the serving ratio.

Due to the practical applications of vehicle dispatching,
the problem of achieving a high serving ratio has drawn
significant attention [2]-[5]. However these works have lim-
itations in handling real-time requests with a consideration
of potential future demands. As a result, these dispatching
algorithms can only run in every high frequency (e.g., every
30 seconds) and brings high operating cost if future demands
are considered.

Although some work relocates vehicle in a longer time
interval [6], they only consider the future pickup demand
and proposed a queueing based algorithm to relocate the idle
vehicles. The queuing based algorithm is not efficient to get
the relocation solution in real-time. Hence, a dispatching
system that proactively relocates idle vehicles at a low
cost while considering both the future pickup and drop-off
demands is highly needed.

In this paper, we propose a Future-Demand-Aware
Vehicle Dispatching service system, called FDA-VeD. The
FDA-VeD system is able to improve the quality of the
urban on-demand mobility service, especially in relation to
achieving a high serving ratio while incorporating future
demand prediction. It contains an offline phase to process
basic data (e.g., road graph, estimated travel time, graph
partitioning) and an online phase to dispatch and relocate
vehicles. The offline phase pre-processes the basic data
and trains the future demand prediction model. The online
phase finds the maximum matching of trip requests and
available vehicles and proactively relocates idle vehicles
between subareas. By considering the potential demands in
a relative long future time interval (e.g., 10 minutes), idle
vehicles are relocated in a low frequency which generates a
low operating cost increase. Overall, we make the following
main contributions in this paper:

o« We develop a system that proactively relocates idle
vehicles to minimise the supply and demand gap,
and significantly improves the passenger serving ratio
without increasing the total number of vehicles.

« We propose an efficient travel time based road graph
partitioning algorithm. The relocation of idle vehicles
between subareas is done according to their potential
future travel demands and vehicles.

« We propose a novel two time-interval based idle ve-
hicle relocation algorithm: advance time-interval (for
relocating idle vehicles) and future time-interval (the
target interval to minimize supply-demand gap).

« We perform extensive experiments on a real dataset.
Results show that FDA-VeD outperforms the state-of-
the-art vehicle dispatching system in terms of passenger
serving.
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An example for relocating idle vehicles. The big rectangle stands for the whole serving area, and the small rectangles and circles stand for

the buildings and pickup/drop-off points respectively. There are four subareas: W, X, Y and Z, highlighted by different colours. The subfigures at different
time points illustrate the process of idle vehicle relocation. (a)10:00 A vehicle picked up a passenger at point P; at 10:00, and spent 10 minutes to arrive
the destination P». (b)10:10 A future supply—demand scenario was predicted at 10:10 and showed that area W would be in oversupply during 10:20-10:30,
while area Z would in undersupply during 10:20-10:30. The vehicle could then be relocated to point P3 belonging to area Z and would arrive at 10:20.
(€)10:20 If the vehicle was relocated, it would stay at P3. Otherwise, it would remain at Po. (d)10:23 At 10:23, a passenger sent a request at P4 and
needed to be picked up in five minutes. It takes 10 minutes from P while only two minutes from P3. Then the relocated vehicle could serve this request.
By proactively relocating idle vehicles between undersupply and oversupply areas, the passenger serving ratio could be improved.

II. PROBLEM FORMULATION

A. Preliminaries

The future demand aware vehicle dispatching problem
involves three different entities, which are passengers, vehi-
cles, and a centralized vehicle dispatching system. Passen-
gers send their trip requests to the centralized dispatching
system using their GPS-enabled smart devices in real time.
After receiving a set of trip requests in a batch time, the
system needs to match these trips with the available vehicles
in a cost-efficient manner. We formulate this problem with
the help of following definitions.

Definition 1 (Trip Request): A trip request T}, defined as
a tuple (¢7, 17, 1%, is a trip requested by a passenger at the
t? (the earliest time when the passenger can be picked up)
from location I, to drop off at location (4. A set of trip
requests during a particular time interval is denoted by 7 =
{1, T, ..., Ty, }

Definition 2 (Vehicle Information): The information
about a vehicle v; is defined as a tuple (p;, s;, t;j), where p;
is the vehicle destination point, s; is its current status (0,
1, 2, 3 stand for available, with-passenger, dispatching and
relocating respectively), and ¢¢ is the destination arriving
time.

Definition 3 (Served Trip): A trip request T; is called as
a served trip if the passenger is actually picked up between
t? and ¢ + A, where A is a pre-defined serving threshold.
The set of trip requests already served by the dispatching
system is denoted by Tserved, Which is a sub set of the total
set of trip requests 7. Mathematically, Tservea = {T;[tF <
ot <P + A}, where “t¥ is the actual pickup time.

Definition 4 (Serving Ratio): Given the set of served
trips Tserveq and all the trip requests 7T, the serving ratio R
of the centralized vehicle dispatching system is defined as

the ratio of Tyerpeq to 7, 16, R = S\e%\ed‘

B. Problem Definition

For this problem, we focus on improving the passenger
serving ratio from the central dispatching platform’s per-
spective, and every vehicle can be relocated according to
the platform’s instructions. A vehicle v; € V can serve only
one trip request at one time. It can start to serve a new trip
request only after it has arrived at the destination of its last
trip. With a given number of vehicles n,, on a road graph G,
a set of real-time trip requests 7, a set of historical trips ,
the objective of the centralized vehicle dispatching system
is to serve the maximum number of real-time trip requests
T, and thus achieve a high serving ratio R.

Tl )]
subject to Vt; € Taerved, b < “tF <tV 4+ A

maximize R =

III. THE PROPOSED SERVICE: FDA-VED

We develop a future demand aware vehicle dispatching
service system (FDA-VeD) that achieves a high passenger
serving ratio with a low operating cost. To achieve this
objective, it is important to have available vehicles in areas
close to the pickup locations of the trip requests coming
into the system. Our solution considers both real-time ve-
hicle dispatching and idle vehicle relocation based on the
predicted demand in the near future. The architecture of the
FDA-VeD system is shown in Figure 2.

The system works in two phases. It first starts with an
offline phase that runs only once for the initial set up.
There are fours main modules in this first phase, which are
road graph extraction as a preprocessing step, estimating the
travel times, partitioning the road graph based on estimated
travel times to identify the different subareas, and future
demand prediction for the different subareas. On the other
hand, the online phase consists of two modules, which
are vehicle-request matching and supply—demand balancing.
The vehicle-request matching module is used to serve a
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Figure 3. Calculate the supply-demand gap in advance and future
time intervals

maximum possible number of real-time trip requests with a
limited number of available vehicles on the road graph and
runs every Atpq.cp, minutes. The supply—demand balancing
module minimizes the supply—demand gap in the serving
area, which means that it minimizes the difference between
the numbers of supplied vehicles and travel demands in a
specific area during a future time interval and runs every
At ¢, minutes.

A. Offline Phase

1) Road Graph Extraction: The road network topology
of a city is the most fundamental information required for
vehicle dispatching. In this work, we capture the required
topology information in the form of a road graph, defined
earlier. The road graph is essential to compute the estimated
travel times, which is also shown in Figure 2. Most open
data of city roads are not specially designed for vehicle
dispatching purpose, so we develop an algorithm to extract
the points and directed links from the generally available
open road network data. The original road network in its raw
form is defined as a graph G’ = (P’, L’) and the extracted
road graph is defined as G = (P, L). In the extraction
algorithm, all intersection points are reserved. The length
of each link is less than length,,., meters. In this research
lengthpma: = 200, which makes any passenger could find a
nearest pickup/drop-off point in 100 meters. In the following
research, the points P in road graph G = (P, L) are used
as the pickup/drop-off point for a passenger’s trip record.
Each trip request’s pickup/drop-off location will be matched
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Architecture of future-demand-aware vehicle dispatching service (FDA-VeD)

to the nearest point.

2) Travel Time Estimation: For a new trip request, it is
essential to have an estimation of the travel time from an
available vehicle’s current location to the desired pickup
point, in order to find the available vehicles to serve the
request. In our system, as shown in Figure 2, we need to
have an estimation of all point-to-point travel times, required
for the other following modules of road graph partitioning,
vehicle-request matching, and supply—demand balancing.

To calculate the point-to-point travel times, we first cal-
culate the travel times corresponding to each directed link [;
in the road graph G. For this calculation, we use a recently
proposed travel time estimation algorithm [7]. Here, we
divide the historical trip record H by hours to determine
the difference in times within 24 hours. The precision can
be improved further by dividing H by months, weekdays,
hours and so on. In this work, the computed travel time
is different at different hours of the day. With the travel
times for each link, we calculate all the shortest travel times
between each pair of points in the road graph G. ett; ;n
denotes the shortest travel time from point ¢ to point j in
hour h.

3) Road Graph Partitioning: We partition the road graph
to divide the whole serving area to subareas. As shown in
Figure 2, it is based on these subareas that the supply—
demand gap is calculated and the idle vehicles are relocated
to the undersupply subareas.

The whole serving area, denoted by A, contains all the
points P € (. As shown in Equation 2, the objective of
the road graph partitioning step is to divide A into a set of
k non-overlapping subareas, each of which, denoted by A;,
contain a small set of points of P, such that their union is
P.

A=UrF 4, )
AiNA; =0 (i #7)

Different from existing road network partition problem,

we are interested in the pickup/drop-off locations based



on the travel time between them and a central location
in these locations that can serve as the partitions. We
redefine the road graph partitioning problem according to
this objective and propose a light-weight heuristic algorithm
for its solution. Our road graph partitioning approach is
based on the following two considerations.
e Based on travel time: The partitioning of the area is
done based on travel times between each pair of points,
rather than the suburb division or location information.
After the having the resulting subareas, a central point
in each of them can be found, from where the largest
number of points in the corresponding subareas can be
served within the passenger’s waiting time A.
o Reasonable subarea size: The size of a subarea should
not be too big. If a subarea is too big, many vehicles
would be dispatched to its central point which could
cause high traffic congestion. Subareas of reasonable
sizes can be obtained by setting a reasonable maximum
number of points (1,,4,) in a subarea, based on the
maximum length of [; in the road graph G = (P, L).
Considering the above points, we proposed a heuristic
road graph partitioning algorithm. There are three main
steps for this algorithm: (1) find the longest travel time
slot in 24 hours ; (2) set the maximum number of points
in a subarea, notated as n,,.s, and the the total number
of subareas, notated as Nsup = |Npoint/Mmaz]; (3) divide
subarea based on travel time. To be more specific, we first
find the point that can achieve the biggest number of points
in maximum waiting time. Then we set this point as a central
nodes and add its top 1,4, nearest nodes to a new subarea.
After finding a subarea, we delete the nodes belonging to
it and search for the next subarea in the reaming points.
Finding road graph partitioning solution can be solved in
O(nsyup|A|?) running time.

4) Future Demand Prediction: In this module, we train
a model to predict the travel demands at time intervals in
the near future in different subareas. The trained prediction
model is used in the supply—demand balancing module
(discussed in Section III-B2), as shown in Figure 2, to know
about the potential future demand in advance so that the
supply can be provided accordingly. Travel demands pre-
diction is an important research area for vehicle dispatching
and fleet management. It has received a significant amount
of attention in the recent past. All such of travel demands
prediction techniques are suitable to be used in the proposed
FDA-VeD system. Travel demand prediction has received
considerable attention [8], [9] in recent years. All methods
of travel demand prediction could be used in a FDA-VeD
system. To present our system and experimental results, we
selected the random forest regression model [10] to predict
the future demand, as it is easy to implement and efficient
to train.

As shown in Figure 3, the FDA-VeD proactively relocate

the idle vehicles to minimize the supply—demand gap for

a future time interval (¢,,ty]. All the relocation progress
is doing in a advance time interval (¢, t,], which means all
relocated idle vehicles should arrive their destinations before
the time point ¢,. To calculate the future supply—demand
gap, four variables should be calculated: the number of
pickup demands in the advance time interval in each subarea
(n_pk{), the number of drop-off demands in the advance
time interval in each subarea (n_dp{), the number of pickup
demands in the future time interval in each subarea (n _pklf ),
the number of drop-off demands in the future time interval
in each subarea (n_dplf ). Then for two time intervals—
(tc,tq) and (tq,tf]—we build two models to predict the
pickup/drop-off demands. Both models have same input:
every subarea A;’s pickup and drop-off demand time series
data in last 24 hours.

The model predicts the pickup/drop-off demand number
in the time interval (¢.,t,] by producing the pickup demand
number n_pk{* and n_dp{ corresponding to each subarea A;.
Similarly, the other model produces the demands number in
the time interval (¢,,%/].

B. Online Phase

The online phase dispatch available vehicles for real-time
requests, and relocate idle vehicles between subareas. There
are two modules belong to online phase: vehicle-request
matching and supply—demand balancing.

1) Vehicle—Request Matching: The trip requests continu-
ously coming into the system need to be served by the avail-
able vehicles. This module forms batches of the incoming
trip requests, denoted by 7, in a batch time interval Atpqgch,
and finds the matching vehicles for them from the set of
available vehicles V,.

The vehicle-request matching module will run every batch
time (Atpqcp, minutes). For each running, the module will
take all the trip requests received in last Atpgscr, minutes
and this request set is notated as 7,. Here, we use t. stands
for the current time point and then the batch requests set 7,
is defined as follows.

To = {T;|(tc — Atpaten) <t} < t.} (3)

To find the maximum matching between the sets of
vehicles and requests, we construct a bipartite graph GVt =
(Tp, Va, E), where FE is the set of connecting edges between
between T, and V,. An edge is created between a vehicle
v; and a trip request T;, if v; is able to arrive at the desired
pickup point of 7} from its current location before ¢! + A,
according to the estimated travel time ett; ; ;.

Finding the maximum matching for the bipartite graph
GV can be solved in O(|E|(|T5| + [Va])'/?) running time
using the Hopcroft-Karp algorithm [11]. The vehicle-request
matching module will dispatch for received requests every
tpatcr, minutes and then re-build a bipartite graph GV, and
repeat the maximum matching operation between 7, and V,.



2) Supply-Demand Balancing: While the trip requests
are being served by the available vehicles in a real urban
dispatching scenario, it is highly likely that some subar-
eas may get a larger (or smaller) number of accumulated
vehicles than required. This would result in some subareas
with abundant number of vehicles and others with a scarcity
of vehicles, thus eventually resulting in a poor passenger
serving ratio due to poor utilization of vehicles. The supply—
demand balancing module solves this problem by relocating
the idle vehicles from the subareas with an abundant supply
of vehicles to those with a scarcity, and thus minimize
the supply—demand gap in the whole serving area. One
possible approach is to relocate the vehicles based on the
real-time demand and supply at the current time point.
But note that the relocation takes time, and by the time
relocation would happen, the supply and demand scenario
in the subareas is likely to change. We solve this issue
by predicting the future demand in advance, and relocating
the vehicles during the available time to serve the future
predicted travel demand. The subareas are generated by the
offline road graph partitioning module, and the prediction
model to know the future travel demand in each subarea is
built by the offline future demand prediction module. This
module consists of two main steps. Firstly, it calculates the
gap between the predicted supply and demand, and then
relocates the idle vehicles accordingly.

Supply-Demand Gap Calculation: It is important to
know the gap between the future demand and supply in
order to make a wise decision on an effective rebalancing
of the subareas. This is done by calculating the demand-
supply gap and relocating the vehicles in such a way that
minimizes the gap. Firstly, the statistics of the requests
by subareas is performed to generate the input data for
the prediction model. Secondly by taking the inputs to the
prediction models trained in the future demand prediction
module, the potential future pickup and drop-off demands in
each subarea during advance time interval and future time
interval (n_pk{,n_dp¢, n_pklf , n_dpl"c ) are obtained.

The supply—demand gap n_gap; for each subarea A;
is calculated as follows. As shown in Figure 3, there are
two time intervals: the advance time interval (t.,t,] and
the future time interval (¢,,%¢s]. The advance time interval
is used for relocating idle vehicles in such a way that
relocation starts at ¢, and thereby get a balanced supply—
demand between subareas at time t,. The supply and de-
mand in the future time interval is the target to balance. With
this balanced supply—demand, the trip requests are served
effectively across the whole serving area during the future
time interval (¢,,t¢).

The vehicle amount at current time ¢, in subarea A; is
n_V;. To calculate the supply—demand gap in (t,,%s], we
firstly obtain the vehicle amount at the advance time t,:

n_Viad =n_V; +n_dp! — n_pk} 4)

Then we calculate the drop-off—pickup gap (gap}) in each
subarea in the future time interval (¢,,s]:

n_gap, = n_dp] —n_pk] (5)

Consider the potential vehicle amount n_Viad at t,, and
the future drop-off—pickup gap gap), we calculate the sup-
ply—demand gap with the following formula:

n_gap; = maz(V%,0) + min(n_gap), 0) (6)

Here we explain why we use formula 6 to calculate the
supply—demand gap.

. Viad (the vehicles amount at time point ¢,) defined how

many vehicle could be used to relocate in subarea i. If
Vi“d < 0, there is no vehicle available to be relocated. If
Vad > 0, there is V¢ vehicles available for relocation.
Then the first part in this formula is maz(V;*%,0).

e n_gap), defined the drop-off-pickup gap in the future
time interval. IF n_gap, > 0, it means subarea i
will have more drop-off than pickup in subarea A;
during (tq,ts] and no vehicles are needed to relocate
to this area. If n_gap, < 0, the subarea A; need
n_gap, vehicles. So the second part in this formula
is min(n_gap}, 0).

If n_gap; > 0, it means subarea A; has more vehicles
than needed. Such subareas are called oversupply area. On
the other hand, if n_gap; < 0, it means subarea A; needs
more vehicles. Such subareas are called undersupply area.

Relocation of Idle Vehicles: The relocation of idle vehi-
cles is to minimize the supply—demand gap in the whole
serving area in the time interval (t,,ts]. One constraint
associated with this relocation is that each relocated idle
vehicle should arrive at its destination before t,. This re-
quires an intelligent relocation strategy in order to effectively
rebalance the serving area, while satisfying the constraint in
the limited amount of time.

To minimize the supply—demand gap, we propose an
effective algorithm to relocate idle vehicles between subar-
eas. Before describe this algorithm, we set two concepts:
available vehicle and idle vehicle. An available vehicle
means that it is not assigned to any travel request and empty
now. An idle vehicle should firstly be an available vehicle
and selected as a candidate to relocate from oversupply
areas to undersupply areas. Then not all available vehicles
in undersupply area can be idle vehicles. Only those in
oversupply area have the possibility to become idle vehicles.
Concretely, firstly find all the oversupply subareas. Then list
all available vehicles in every oversupply subarea. When the
number of available vehicles is small that the gap n_gap;,
then all the available vehicles are added into the idle vehicle
set Viqie. Otherwise, randomly select n_gap; vehicles from
available vehicles, and add them to the idle vehicle set
Vidie- Then, build the bipartite graph G®*e"c¢ to find the
maximum matching between idles vehicle sets and central



nodes. As shown in Figure 2, after the physical relocation
of vehicles, the information about them is updated in the
system. The supply—demand balancing module runs every
At ¢, minutes.

IV. EXPERIMENTS AND RESULTS
A. Dataset

Trip records dataset The trip records dataset used in the
experiments is from New York City in January 2011 ( could
be downloaded at: https://www1.nyc.gov/site/tlc/about/tlc-
trip-record-data.page). The original dataset contains 13.4
million records. In the experiments, we focus on the trip
record whose pickup location and drop-off location are both
in Manhattan Island. After the filter, there are 11.2 million
records left.

Road network The road network of Manhattan Island was
downloaded from www.openstreetmap.org. According to the
road conditions in Manhattan, we extracted the following
ways: primary, primary_link, secondary, tertiary, residential,
unclassified, road and living street. Several other classes are
not considered. These include footpaths, trunks or service
roads, as they are unlikely to contain pickup or drop-off
locations.

B. Experiment Setup

For the whole system, the passenger’s maximum waiting

time A = 5 minutes.

1) Offline Phase:

o Road Graph Extraction: The raw road network of
Manhattan Island is used to extract road graph. The
raw road network G’ = (P’, L’) contains 13587 points
and 20919 directed links. Then using the road graph ex-
traction module, we obtained the network G = (P, L)
containing 5085 points and 10126 directed links.

o Travel Time Estimation: To estimate the travel time,
the trip record’s pickup and drop-off locations are
matched to the nearest points in G. Then filter the
record whose pickup point and drop-off point is the
same and travel time is shorter than 2 and or longer
than 60 minutes. After filtering, there are 10.9 million
records. Then we obtained the estimated travel time
{ett; j»} in 24 hours.

e Road Graph Partitioning: In this module, the max-
imum number of nodes in a subarea n,,,, equals to
100 and 50 subareas were generated. As the average
length of all links L in graph G is 97.6 meters, the
approximate size of a subarea is around 1km?2. We test
the performance of the system by varying 7,4, from
10 to 5000, see Section IV-D2.

o Future demand prediction: Here, we set three dif-
ferent value for advance time slot At,.: 10, 20, 30.
The future time slot Atg, is set as 10. For each pair
of parameters, we train two random forest regression
models to predict the future demands for all subareas

in the advanced time interval (¢.,t,] and the future
time interval (¢,,%s] respectively. Trip records during
20110101-20110110 are used to train the models.

2) Online Phase:

« Vehicle—-Request Matching: For this module, there are
two parameters to set: the batch time Atpqscp, and the
number of vehicles |V|. Here, we set Atpqtcn, = 1, and
|[V| = 6,000. The experiments will make based on this
number of vehicles. Furthermore, we also investigate
the effect of the vehicle number changing, where |V
increased from 2,000 to 10,000.

« Supply-Demand Balancing: Based on the above set-
tings, there is no new parameter need to be set. This
module will update every At to relocate idle vehicles
to balance supply and demand between subareas.

C. Evaluation Metrics

To evaluate the performance of a vehicle dispatching
system, three evaluation metrics were used: serving ratio,
with-passenger ratio and gain—cost ratio.

« Passenger serving ratio, notated as R, is defined in

Definition 4.

« With-passenger ratio, notated as rq, is the ratio of
the with-passenger travel distance against total travel
distance. As described in Definition 2, there are four
status of a vehicle (0, 1, 2, 3 stand for available, with-
passenger, dispatching and relocating respectively).
We use di,ds,ds,dy;; stands for a vehicle’s with-
passenger, dispatching, relocating, and total travel dis-
tance. Then the with-passenger ratio r; = %.

o Gain—cost ratio, notated as ry., is the ratio of the
increased with-passenger travel distance and the re-
locating travel distance. The increased with-passenger
travel distance is the gain and calculated by d, = d; —
daseline Here, dbaseline is the with-passenger length
of a baseline model. The relocating travel distance is
the cost and calculated by d. = d3. Then the gain—cost
ratio is calculated by . = Z—i.

D. Results

We evaluate FDA-VeD with the travel requests during
20110112-20110118 (seven days) in Manhattan Island. As
there does not exist any other work exactly on the same
problem. We select the most closely related work is recently
published in Nature by Vazifeh et al. [2]. We compare our
results with their online batch model [2], called OBM-VeD
in this paper. OBM—-VeD is a system containing only three
modules: road graph extraction, travel time estimation, and
vehicle-request matching. It does not consider the potential
future demand to proactively relocate idle vehicles between
subareas. It could also be thought as an FDA-VeD system
with an extreme case—when the whole area is divided
into only one subarea. Specifically, when n,,,, = 5000,
FDA-VeD system is equivalent to OBM—-VeD.
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Passenger serving ratio in Manhattan Island (20110112-

Figure 4 shows the serving ratio R by hour for OBM-VeD
and FDA-VeD with different parameters. It is clear that
the FDA-VeD outperforms OBM-VeD significantly in terms
of serving ratio. R in seven days for OBM-VeD is 0.71,
and the FDA-VeD achieves 0.89, 0.96, 0.97 with At,.
as 10, 20, 30 minutes respectively. Using a 10 minutes
advanced time (At,. = 10) to relocate idles vehicles for
the future time interval (¢,,¢s], R can be improved by 18%
compared to OBM-VeD. When At is increased from 10
to 20, R can be further improved significantly, results 25%
improvement compared to OBM—VeD. By increasing At
from 20 to 30, the performance sees further improvement,
but not significant (1%).

1) Impact of Fleet Size: The fleet size is an important
factor that significantly influences the serving ratio. Here we
fixed the subarea size and changed the fleet size. Figure 5(a)
shows the serving ratio with different numbers of vehicle.
When |V| increases from 2000 to 10000, the FDA-VeD
system always performs better than OBM-VeD. When |V|
is small (e.g. 2000) or large (e.g. 10000), the improvement
of the FDA-VeD are relatively small compared with |V| =
6000. When the |V| is very small, there are not so many
vehicles could be used to relocate because many subareas

Table 1
OPERATING COST

ltem  OBM-VeD FDA-VeD Aty, = 10

Atae =10 Atge =20 Atge =30
a1 1458 1857 2034 2044
do 449 54.5 58.0 583
ds 0 6.0 19.7 249
daul 190.7 246.2 281.1 287.6
r 0.76 0.75 0.72 0.71
dy - 399 576 586
de 0 6.0 19.7 249
Tge - 6.64 2.93 2.36

are undersupplied. When the |V] is very large, OBM—VeD has
a high serving ratio; thus, the improvement of FDA-VeD is
relatively small.

Figure 5(a) shows that no matter how |V| changes, the
FDA-VeD with At,. = 20 and At,. = 20 always have
nearly the same serving ratio. It means 20 minutes is enough
for Manhattan Island to relocate all idle vehicles to the places
that need them, while 10 minutes is not.

2) Impact of Subarea Size: The size of subarea is decided
by the parameter n,,,, and will affect the subarea divisions.
Different values of n,,,, are tested, including 10, 50, 100,
500, 1000, 5000. When n,,4, = 5000, as there are only
5085 points in the road graph, the whole serving area would
be divide into only one subarea and the relative FDA-VeD
system is equivalent to that of OBM-VeD.

Figure 5(b) shows that by increasing subarea size 7,44,
the serving ratio has a downtrend. When n,,,, = 1000,
the whole area is divided into 5 areas and there is no big
ratio improvement for FDA-VeD with At,. = 10,20. When
Nmaez = 10, a relatively small value, there is considerable
improvement for all three At,. values.

3) Operating Cost: Compared to OBM-VeD, the
FDA-VeD system will increases the operating cost, as it
needs to relocate idle vehicles. There are two metrics to
evaluate the operating cost: with-passenger ratio r; and
gain—cost ratio 74.. Table I shows the average vehicle’s
travel distance per day and the metrics. When At,. = 30,
the with-passenger ratio r; decreases from 0.76 to 0.71
(5% decrease), while with-passenger distance d; increases
from 145.8 to 204.4 (40.1% increase) and 74, = 2.36,
that means every lkm relocating distance can bring 2.36
km with-passenger distance. When At,. = 10, r; only
decreased by 1%, while d; increased by 27.4% and every



lkm relocating distance can bring 6.64km with-passenger
distance. Compared with the increase of serving ratio,
FDA-VeD system operating cost’s increase is very low.

V. RELATED WORK

To handle dispatching task with large number of requests
and vehicles, Vazifeh et al. [2] proposed a scalable solution
to dispatch vehicle for a batch of real-time requests and
achieved the maximum matching of available vehicles and
real-time requests. Zhang et al. [12] proposed an combina-
torial optimization model to dispatch vehicles for real-time
travel requests. However, only real-time requests are used
to dispatch vehicles which can lead to idle vehicles in low
demand areas.

There exist some works that consider the potential fu-
ture demand in vehicle dispatching systems [3], [13], [14].
Lowalekar et al. [3] used potential future demands to select
which requests to serve. The request which destination has
a higher probability of being requested in the future will
be served first. Xu et al. [13] modelled vehicles dispatch-
ing as a sequential decision-making problem and design
algorithm considering both the instant reward and future
state-value to optimize long-term global efficiency. Cheng
et al. [14] proposed a queueing-based vehicle dispatching
framework, which first predicts the future travel demand
of each region, then estimates the idle time periods of
vehicles through a queueing model for each region. Then
they used a batch-based vehicle dispatching algorithm to
assign suitable vehicles to requests. However, these works
are passive vehicle dispatching solution, which means they
only dispatch vehicles for received requests and do not
proactively relocate idle vehicles before received requests.
If an area has no request at present but demands in the
future, their model can not dispatch vehicles for this area in
advance.

The idle-vehicle relocation strategies proactively relocate
idle vehicles to high demand area and improve the serving
ratio by improving the utilization rate of vehicles [4]-
[6]. Alonso-Mora et al. [4], [5] propose a framework to
dispatch vehicles and relocate idle vehicles for online ride-
sharing. In their work, idle vehicles are relocated in every
30 seconds, which is a very short period, and can increase
relocation costs significantly. Sayarshad et al. [6] propose a
queuing-based formulation to solve the idle-vehicle reloca-
tion problem for on-demand mobility services. They made
idle-vehicle relocation in a low frequency, every 15 minutes.
However, instead of developing an effective technique to
divide the serving area, they simply used the already-defined
boundaries (e.g., suburb boundary) for this. Also, they only
consider the pickup location of requests, without taking into
account their drop-off locations. This means that new idle
vehicles need to be relocated into the subareas.

VI. CONCLUSION

In this paper, we developed a vehicle dispatching system
called FDA-VeD for on-demand urban mobility. The system
maintains a balance between the demand and supply in dif-
ferent subareas by considering the relocation of idle vehicles
based on their predicted future demands. By considering
both the pickup and drop-off demand for each area, we could
relocate idle vehicles for a long future time interval and low
frequency. Extensive experiments show that with a small
operating cost, FDA-VeD significantly helps in achieving a
high passenger serving ratio.
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